Markov Chain Monte Carlo A Contribution to the Encyclopedia of Environmetrics

نویسندگان

  • Galin L. Jones
  • James P. Hobert
چکیده

Realistic statistical models often give rise to probability distributions that are computationally difficult to use for inference. Fortunately, we now have a collection of algorithms, known as Markov chain Monte Carlo (MCMC), that has brought many of these models within our computational reach. In turn, this has lead to a staggering amount of both theoretical and applied work on MCMC. Thus we do not propose a complete overview of MCMC in this article. Actually, we only hope to get the reader started in the right direction. To this end, we spend some time indicating when it is appropriate to consider using MCMC. Then we introduce the fundamental algorithms and address some general implementation issues. An obvious omission from this paper is an introduction to the Markov chain theory underpinning MCMC algorithms. Instead we refer the interested reader to Besag, Green, Higdon & Mengersen (1995), Robert & Casella (1999), and Roberts & Rosenthal (1998). However, throughout we will use the phrases “MCMC algorithm” and “Markov chain” interchangeably.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

Monte Carlo Simulation to Solve the Linear Volterra Integral Equations of The Second Kind

This paper is intended to provide a numerical algorithm based on random sampling for solving the linear Volterra integral equations of the second kind. This method is a Monte Carlo (MC) method based on the simulation of a continuous Markov chain. To illustrate the usefulness of this technique we apply it to a test problem. Numerical results are performed in order to show the efficiency and accu...

متن کامل

An autoregressive point source model for spatial processes.

We suggest a parametric modeling approach for nonstationary spatial processes driven by point sources. Baseline near-stationarity, which may be reasonable in the absence of a point source, is modeled using a conditional autoregressive (CAR) Markov random field. Variability due to the point source is captured by our proposed autoregressive point source (ARPS) model. Inference proceeds according ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000